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Abstract
Barium sodium niobate (Ba2NaNb5O15) is a tungsten bronze structure that
exhibits a complicated sequence of six structural phase transitions, including
three incommensurate (IC) phases. The phases are unusual in that all but the
highest temperature P4/mbm structure are ferroelectric. Unlike the situation
for most incommensurate insulators, in which ferroelectricity develops at low
temperatures along the modulation direction, the polarization direction in
barium sodium niobate is orthogonal to the modulation(s), permitting some
unusual phenomena. In the present study we analyse the thermal and dielectric
behaviour at the Curie temperature TC near 830 K as well as that at the Ccm21–
IC(1q) transition near 543 K, the IC(1q)–IC(2q) transition near 565 K and the
IC(2q)–P4bm transition at 582 K. The entropy change at 565 K is related to
the wall roughening model of Rice et al (1981 Phys. Rev. B 24 2751). Data
near TC = 830 K indicate close proximity to a tricritical point, and discussions
of critical exponents are presented, all of which are found to be mean field.
Because of Na vacancies, transition temperature variation is found among
specimens Ba2Na1−x Nb5O15 (830 K < TC(x) < 865 K), and the system
appears to be describable by the disordered exclusion model as a slightly first-
order intrinsic system whose dynamics are suppressed by weak disorder. Near
TC the specific heat C(T ) is compared with the random bond prediction of Harris
(1974 J. Phys. C: Solid State Phys. 7 1671): C(T ) = C0(T )/[1 + bx2C0(T )],
where C0(T ) is the intrinsic specific heat of the vacancy-free crystal varying as
(TC − T )−1/2 and x is the sodium vacancy concentration. In agreement with
Harris’s model, the shifts in TC(x) are to lower T with increasing x and scale
as x ; the broadening scales as x2; and the effective critical exponent remains
unchanged at α = 1/2.

0953-8984/05/375911+16$30.00 © 2005 IOP Publishing Ltd Printed in the UK 5911

http://dx.doi.org/10.1088/0953-8984/17/37/026
http://stacks.iop.org/JPhysCM/17/5911


5912 J F Scott et al

1. Introduction

The situation with regard to critical exponents describing thermodynamic quantities near
structural phase transitions in ferroelectrics and related oxides is at present rather unsatisfactory,
both theoretically and experimentally. Very few ferroelectrics actually exhibit continuous,
second-order phase transformations; most are slightly first order, that is, near tricritical points.
The exponent α′ that describes the divergence of specific heat just below a tricritical point
has been calculated in mean field theory to be zero (logarithmic or step discontinuity) in one
standard textbook [1] and to be 1/2 in an equally popular text [2]. It is historically interesting
to note that Landau’s calculation of α′ = 1/2 actually predates [3] his classic ‘Landau theory’
paper of 1937, although this was apparently unknown to the author of [1]. Experimentally, most
researchers find these crystalline phase transitions to be mean field, as expected from the fact
that strain is long range and unscreened,and the Coulombic interaction (unlike magnetism) also
long range; but this is equally contentious, with Kleeman et al claiming [4] SBN (tungsten
bronze structure strontium barium niobate) to be a perfect example of random field Ising
dynamics (RFID), Schranz et al recently clarifying the earlier controversy that ferroelectric
Lawsonite near TC is a mean field and not an Ising system [5] but maintaining that the
antiferrodistortive transition in the same material is not mean field but a [3D] Ising system
(this paper clarifies earlier results [6, 7]) and finally Harris arguing that calcite and NaNO3

are [2D] XY -systems and not mean field [8]. Many authors do not recognize that structural
phase transitions may yield ‘apparent’ or ‘effective’ exponents (such as β � 1/2 for the
temperature dependence of the order parameter), not from true critical fluctuations and the
consequent failure of mean field theory, but instead from some slight order–disorder character;
structural phase transitions should give β = 1/2 (second order) or β = 1/4 (tricritical) only
in the displacive limit, not in a system with mixed order–disorder and displacive dynamics.
It is unlikely that claims of non-mean field behaviour extending over many degrees can be
compatible with the ‘Ginzburg criterion’ [9] (actually derived by Levanyuk [10]), simply
because true universal, fluctuation-dominated ‘critical’ dynamics require that 〈φ2〉 � 〈φ〉2,
where φ is the order parameter; and this condition is unlikely to prevail several degrees or
more from the phase transition temperature. Indeed, even for SrTiO3 where the well-known
EPR results of Mueller produced [11] a critical β = 0.332, newer birefringence results from
Oxford [12] yield perfectly mean field results of β = 0.50. We emphasize that in the present
case the values of the primary critical exponents α, β, γ, δ are all self-consistent, and we
draw no conclusions based upon β = 1/4 alone. Further, we stress that although our barium
sodium niobate specimens have weak static disorder due to Na vacancies, the dynamics of the
ferroelectric phase transition are displacive.

Part of the problem is that among ferroelectrics with displacive phase transitions (as
opposed to order–disorder ones) there are very few, if any, for which all of the basic critical
exponents α, β, γ, δ have been measured near tricritical points. (Here, in the usual notation,
α refers to the divergence of the specific heat; β describes the order parameter evolution
with reduced temperature t = (TC − T )/TC (i.e., spontaneous polarization in a ferroelectric
P(T ) = P(0)tβ ); γ is the isothermal susceptibility exponent ε(t) = ε(1)t−γ ′

; and δ, that
describing the dependence of displacement vector D or polarization P with applied conjugate
field E along a critical isotherm E = Dδ ; primes denote values below the Curie temperature
TC.) The behaviour of critical exponents in ferroelectrics near tricritical points has been
of special pedagogic interest for more than thirty years, because as claimed by Stanley [1],
mean field theory predicts values (α = α′ = 0, yielding a step discontinuity or logarithmic
divergence; β = 1/4; γ = γ ′ = 1; δ = 5) that fail to satisfy the Rushbrooke inequality [13],
which is satisfied as an equality with α = 1/2 in scaling theory (the Griffiths inequality [14, 15]
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Figure 1. Phase diagram for barium sodium niobate: Ba2NaNb5O15. The room temperature
phase is nominally a commensurate orthorhombic Ccm21 structure [36] and not the previously
assigned [37] Ccm2; but a small residual incommensurate quality is found in most samples and
generally attributed to Na vacancies pinning antiphase boundaries [38].

is also not satisfied by Landau theory at tricritical points with α′ = 0, but requires α′ = 1/2).
However, Strukov and Levanyuk [2] disagree with Stanley, following Landau’s original 1935
work and deriving α′ = 1/2 from the simplest G(P, T ) = A(TC−T )P2 +B P4 +C P6 Landau–
Devonshire free energy. Values of α′ have been discussed by Scott [16] (various measurements
of α′ near tricritical points in ferroelectrics are given in [17–23]) and are also of considerable
interest and controversy experimentally in the case of strontium barium niobate (SBN) [3, 24],
typically doped with Ce. Adding to the interest is the fact that barium sodium niobate is
normally not stoichiometric, owing to the presence of Na ion vacancies, which vary strongly
from sample to sample (thus giving TC from 830 to 863 K). This kind of weak disorder arising
from vacancies at only one kind of lattice site probably satisfies the description of ‘disordered
exclusion models’, which can change [25, 26] the critical behaviour of nominally second-order
phase transitions, according to the Harris criterion [27–32], and also suppress the first-order
character of phase transitions [33]. Hence in the present study we wish to reconcile disparate
specific heat measurements on Ba2NaNb5O15 and see whether we can describe it in terms of
these models; some specific heat data have been presented recently by others, but not fitted to
any models [34]. Previously we have shown that our experimental values of β, γ and δ for
barium sodium niobate satisfy the thermodynamic Widom equality [35]

γ ′ = β(δ − 1), (1)

which yields experimentally 1.1 ± 0.1 = (0.31 ± 0.05)(4.0 ± 0.1) = 1.2 ± 0.1; but this
relationship, unlike those of Griffiths, does not involve the specific heat exponent α. It is
useful to point out, parenthetically, that the early but very precise values of d15(T ) reported
by Byer et al [36] show no discontinuity at TC and are compatible with 1/4 < β < 1/2, and
therefore support the value of β = 0.31 given by Shieh et al [36]. Although Byer et al did not
attempt to fit a value of β from their data, our fit to their data yields β = 0.41 ± 0.05, in fair
agreement with 0.31 ± 0.05 from Sheih et al on a different sample; note that near the exact
tricritical point but on the continuous side, β will lie between 1/4 and 1/2 from mean field
tricritical theory.

The accepted P–T phase diagram for this material is shown [37, 38] in figure 1.
The order parameter for the incommensurate phase is four dimensional, which is unusual

but not unique (e.g., BaMnF4) [39]. This actually causes some serious consequences: unlike
systems with order parameters of dimension 1, 2 or 3, four-dimensional cases are those for
which the dimensionality is not sufficient to specify the critical behaviour, which also in this
case depends upon the symmetry of the order parameter. In some cases [39] the effects
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of fluctuations prevent continuous transitions. Toledano and Toledano [39] find that for
four-dimensional order parameters the critical exponent β should be 0.39. There has been
particular interest in the interaction of mobile point defects with incommensurate antiphase
boundaries [38–42]; Toledano et al have shown [38] that these are sodium vacancies (as
verified by Oliver and Scott [36]), and Schneck has shown [41] that the vacancy concentration
can exceed 10%, depressing TC. These antiphase kinks can propagate very rapidly and give rise
to a diffusivity of 1.3 cm2 s−1 [42, 43], approximately 65 times faster than the thermal diffusion
at the same temperature, and compatible with theory [44]. Additional studies show [45, 46]
that this diffusion is hydrodynamic, with a dynamic central mode linewidth whose width is
proportional to q2, the square of the momentum transfer in laser spectroscopy experiments. The
lowest temperature P4nc phase was determined from a spallation neutron study [47] and is the
most recent phase characterized, with its space group in accord with the PhD Thesis prediction
of Schneck [41]; note, however, that one group of authors (Uesu et al [48, 49]) have found no
evidence of any transition near 40 K or in fact below 110 K. This point is reviewed by Buixaderas
et al [50]. The 1q–2q transition near 565 K was analysed by Raman spectroscopy [51]. The
same 12% modulation of NbO6 octahedra angles in the IC phase was found independently
by Oliver et al [52, 53] and Labbe et al [54]. Whereas the 1q orthorhombic modulation is
long range, the 2q tetragonal modulation is only short range [55–62] as shown especially by
electron microscopy studies [58–62], and therefore we will describe it in the present work as a
wall roughening phenomenon [63]. In general, it is expected that ferroelectric incommensurate
insulators will not undergo wall roughening transitions for the antiphase boundaries in their
incommensurate phases; but as pointed out by Levanyuk [64], this should be true only for
those in which the ferroelectric polarization is collinear (or coplanar) with the modulation(s).
The reason is that the macroscopic strain that is associated with antiphase boundary curvature
carries a long-range Coulombic field, so roughening has an energy cost. Since the crystal
structure has P perpendicular to its modulation(s), wall roughening might be expected in
Ba2NaNb5O15.

The original study of specific heat and entropy changes in the high temperature phases
of barium sodium niobate was by Toledano and Pateau in 1974 [65]. However, at that time
they thought that the three transitions at about 543, 565 and 582 K were a single (continuous)
Ccm21–P4bm orthorhombic–tetragonal transition. They pointed out that their experimental
results were inconsistent with this assumption combined with mean field dynamics in that the
measured specific heat anomaly was an order of magnitude larger than calculated.

2. Experiment

In all first-order or tricritical phase transitions it is convenient to denote three different
characteristic temperatures. We use below T0 to designate the actual phase transition
temperature. TC is the ‘Curie temperature’, and it denotes the extrapolated divergence of some
physical quantity (such as electric susceptibility or specific heat) measured from temperatures
above T0. T ′

C is an analogous quantity extrapolated from temperatures below T0. Thus
TC < T0 < T ′

C and for a nearly tricritical system each of the three temperatures differs
from the others by about 2–10 K.

2.1. Specific heat

The specific heat of a 0.1 g mass, gem quality crystal of Ba2NaNb5O15 was measured using
a Perkin-Elmer ‘Diamond’ differential scanning calorimeter. Because of the different forms
and magnitudes of the specific heat anomalies for the ferroelectric and the incommensurate
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Figure 2. Specific heat: (a) present data on a sample believed to have a high density of sodium
vacancies; the solid curve is a fit to the Harris equation (equation (7)) with α′ = 0.50 and
T0 = 829.5 K; (b) present data in the temperature range of the three incommensurate phase
transitions, showing the uppermost 2q–P4bm and the lowest Ccm21–1q (the middle 1q–2q is
too weak to be seen here but is barely perceptible in (c)); (c) data from [34], fitted by us to a
power law C(T ) = A + BT + Dt−α , with α = 0.50, reduced temperature t = (T ′

C − T )/T ′
C and

T ′
C = 848.15 K.

phase transitions, data were collected using two different calorimetric techniques. For the
ferroelectric transition around 830 K, CP data were collected in step-scan mode; in this
method, the sample is repeatedly heated by a standard temperature increment (1 K in this
experiment). The heat flow response of the sample is recorded until the sample re-equilibrates.
Integrating these data gives the enthalpy change associated with heating the sample, and hence
the specific heat, shown in figure 2(a). Measurements in the range 480 K < T < 600 K were
made using standard differential scanning calorimeter (DSC) continuous scanning methods,
for both heating and cooling scans, with a ramp rate of 20 K min−1. The heat flow data were
normalized against a sapphire standard to determine the specific heat, given in figure 2(b). In
figure 2(c), we reproduce the raw heat flow data from [34], measured for a different, more
stoichiometric sample of Ba2NaNb5O15.

The fit to the present results for the ferroelectric phase transition shown in figure 2(a) is
to the Landau model for a nearly tricritical phase transition, (T/�C2

P ) ∝ (T ′
C − T ), which

corresponds to a critical exponent α′ = 1/2. The fit assumes that the baseline specific heat
(shown as a broken line in figure 2(a)) is independent of temperature at sufficiently high T .
The temperature T ′

C at which �CP would diverge is 831.5 K; the fit shown in figure 2(a) stops
at 827 K. (Calibration of our system was made with measurements on quartz and LaAlO3,
whose transition temperatures are in the same region.) The lower temperature data show two
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reasonably clear anomalies, at 519 and 574 K. The most likely interpretation of these data is that
these are the temperatures of the Ccm21–IC(1q) and IC(2q)–P4bm transitions respectively
in figure 1, and that the thermal anomaly of the IC(1q)–IC(2q) transition is too small to be
observed.

The present results shown in figure 2 are compared with previously unfitted data on a
different sample from [34]. Note that we see two clear anomalies at the upper and lower
incommensurate (IC) phase transitions near 543 and 582 K, and a weaker anomaly at the 1q–
2q transition at 565 K. The transition near T0 = 830 K, discussed further below, yields a critical
exponent α′ = 0.50 ± 0.05. We emphasize that this value is expected from scaling theory
at tricritical mean field transitions but disagrees with the value (of zero) predicted by Stanley
from Landau theory [1]. We show below that it is compatible with the other critical exponents
β = 0.31 ± 0.05, γ = 1.1 ± 0.1 and δ = 5.0 ± 0.1 determined for this transition. Thus this
transition serves as a paradigm for tricritical ferroelectric (mean field) phase transitions. The
only other tricritical ferroelectric known to us for which all four of these exponents have been
determined is KH2PO4 (‘KDP’), and that system has been a source of controversy regarding
some of its exponents (and even whether the transition is first or second order). The best KDP
results are probably those of Schmidt et al [17]. The present results also agree with the early
values [18] of α′ = 0.50 in KDP from Reese, and of α = 0.54 in BaMnF4 from Scott et al
[19], disagree with the non-mean field results from Petzelt et al [20] for tris-sarcosine calcium
chloride, but agree with the results from Scott and Chen on the same material [21]. Similarly,
Lopez-Echarri et al find [22] α′ = α = 0.40 in K2SeO4. Very recently Romero et al [23] have
also obtained α′ = 0.50 for the tricritical transition in triglycine selenate.

2.2. Dielectric constant

The original study of dielectric behaviour in barium sodium niobate [66, 67] revealed Curie–
Weiss laws in both ferroelectric and paraelectric phases and transition temperatures varying
from 833 to 863 K; all samples exhibited slightly first-order transitions, with stoichiometric
specimens exhibiting extrapolated Curie–Weiss values of TC = 857 and T ′

C = 859 K; and the
actual transition (Curie) temperature T0 about midway between at 858 K, at the high T end
of the range of samples (less stoichiometric specimens gave T0 values near 833 K). The more
recent data from Zhu et al [34] give a slightly lower T0 = 848 K for their specimen. The fitting
of T ′

C and critical exponent α gives a correlation between these two parameters; therefore in
order to provide a value of γ ′ and also an independent value of T ′

C we carried out dielectric
measurements on the same sample (B), using an HP4192A impedance analyser. All numerical
values quoted are averages of heating and cooling runs. The results are shown in figure 3
and yield γ ′ = 1.0 ± 0.1 and T ′

C = 837.7 ± 0.1 K for our sample B; above the transition at
T0 = 829.5 K they yield a Curie temperature TC = 805.0 ± 0.1 K and γ = 1.0. The large
difference of 32.7 K for TC and T ′

C is typical of slightly first-order transitions in ferroelectrics
and exceeds the 2 K value from [34] for a perfectly stoichiometric sample. The specific heat
data were fitted with this T0 value as a constraint. Most of the dielectric data were run at
100 kHz; this frequency was chosen after measurements were made at numerous temperatures
from 10 Hz to 10 MHz and was picked because it corresponds to a frequency-independent
plateau over the temperature range of interest. Both εa = εx and εc = εz were measured,
where c is the fourfold tetragonal axis. Data very closely resemble the original results of
Singh et al and Yamada et al [66, 67], with ambient εz = 40 ± 2 and εx = 230 ± 5.

The dielectric loss tangent shown in figure 3(b) exhibits several effects. Below the
uppermost incommensurate–commensurate transition temperature at about 582 K, the loss
is quite low (�1%). Above the transition to P4bm it abruptly increases and diverges rapidly
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Figure 3. Dielectric con-
stant versus temperature for the
present barium sodium niobate
sample in the vicinity of its
high temperature ferroelectric–
paraelectric phase transition tem-
perature (average for heating and
cooling). The ratio of 1/εx above
(not shown) and below T0 is ap-
proximately 3.5:1 (see [81] for an
explanation of such ratios, which
need not be 2:1 even in mean
field continuous transitions); (a)
ε′

x ; (b) δ = ε′′
x /ε′

x ; (c) 1/ε′
x

(units are 10−5, dimensionless,
and are proportional to recipro-
cal capacitance 1/C); (d) non-
polar axis susceptibility ε′

z ; the
minimum near 680 K is not un-
derstood but presumably relates
to the equally unexplained maxi-
mum in the c-axis lattice constant
near 675 K [68].

above that temperature, reaching approximately 15% near T0. Above 900 K it continues to
diverge. This ionic conduction is compatible with other evidence for Na vacancy conduction
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discussed elsewhere. We note in addition to this overall increase an unexpected shoulder on the
loss beginning at the IC–P4bm transition near 582 K and peaking around 700–800 K; this arises
slightly above the low temperature limit of the P4bm ferroelectric phase and disappears at high
temperature for this phase near the P4bm–P4mbm transition to the paraelectric phase, so it is
directly related to the ferroelectric, commensurate state and is absent in the incommensurate
state at lower temperatures and the paraelectric state at higher temperatures. Thus, whereas
this incommensurate–commensurate transition near 582 K has no measurable effect on the
dielectric constant, it has a strong effect, not previously reported, on the loss. It is possible
that this loss relates to Na conduction, and we note that there are strong asymmetries in lattice
constant expansion [68] at this transition (near 582 K), with the a- and b-axis expanding
at 0.1% per 100 K, but the c-axis peaking near 675 K and then contracting at a comparable rate
at higher temperatures. These geometric changes alter the Na conductivity. Note in particular
that the increase in dielectric loss in figure 3(b) becomes more rapid near about 670 K, the
temperature at which the c-axis lattice constant peaks [68] (changes from rapidly increasing
with temperature to rapidly decreasing).

2.3. Polarization, electro-optic coefficients and exponent β

Our fit to the d15 data of Byer et al [36] in tetragonal P4bm is shown in figure 4. These yield a
tricritical transition (no apparent discontinuity) for this Stanford sample at TC = 841.6±0.7 K,
and a critical exponent of β = 0.41 ± 0.01 (± values are random errors). (The d15 values
are independent of T in the orthorhombic and IC phases, 300–580 K.) The parameters β and
TC are highly correlated in our least squares fit (89%), so the real uncertainties (systematic
errors) are greater than the random errors quoted above. If β is taken as <0.35 or >0.45 the
fit becomes visibly worse. Thus, the inferred value of β = 0.41 ± 0.05 is compatible with the
earlier values of 0.28±0.05 and 0.31±0.05 determined [36] by quite different techniques (on
different specimens). The present fit establishes only that the transition is continuous or very
nearly continuous (no observed discontinuity at TC) and that β is <1/2, in agreement with a
tricritical description.

3. Results and discussion

3.1. Critical exponents and (in)equalities

Having obtained accurate values of α for barium sodium niobate (BNN), together with
previously published values [69] of β and δ, and the value of γ from the present work, we can
check for self-consistency with the Rushbrooke and Griffiths equalities. In each case these
are thermodynamically rigorous inequalities (the left-hand side of each equation below being
greater than or equal to the right-hand side) that under the additional assumption of scaling
become exact equalities:

α′ + 2β + γ ′ = 2.16 ± 0.12 experiment (Theory � 2; Rushbrooke) (2)

α′ + β(1 + δ) = 2.18 ± 0.20 experiment (Theory � 2.00; Griffith I) (3)

γ � (2 − α)(δ − 1)/(δ + 1) i.e., 1.1 ± 0.1 � 1.0 ± 0.1experiment

(Theory : 1.0 � 1.0; Griffith II). (4)

We note that in scaling theory α′, β and δ are not independent parameters but are related
as

α′ = 2 − (δ + 1)β = 1/2, (5a)

and α′ = α. (5b)
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Figure 4. d15(T ) electro-optic coefficient in the tetragonal P4bm phase of barium sodium
niobate [15], fitted (present work) to d15(T ) = d15(0)[(TC − T )/TC]β , with β = 0.41 ± 0.01
and TC = 841.6 ± 0.7 K (correlation 0.9 between fitted values of β and TC). Note that the
value β = 0.41 ± 0.01 agrees, perhaps coincidentally, with the theoretical prediction of 0.39 for a
four-dimensional order parameter [39], which is the present case.

With the further assumption (certainly true in the present case) that 2 − α − γ ′ > 0, Stanley
derives [1], by combining equations (3) and (4) to eliminate δ, that

β(2 − α + γ ) � (2 − α′ − β)(2 − α − γ ), (6)

an equation of interest because it connects parameters below and above TC. This relationship
does not involve δ and should be satisfied as an equality within the scaling hypothesis. It is the
most important (in)equality for the present study. For mean field tricritical values (according
to Stanley) α = α′ = 0, this equation fails even as an inequality. For α = α′ = 1/2, from
scaling it works (5/8 = 5/4×1/2). However for α = 0 but α′ = 1/2 [2], it fails as an equality
(this is because α � α′ was assumed by Griffiths in his derivation of the equations leading to
equation (6)).

The data on one Chinese sample (sample A; figure 2(c)) from [34] exhibit a ferroelectric
transition at 847.18 K, and a critical exponent α′ = 0.50 (our fit), with a sharp cusp. This is an
abrupt, slightly smoothed but discontinuous,first-order phase transition,where the specific heat
extrapolated from below diverges at T ′

C = 848.15 K, about 1.0 K above the actual transition
temperature. The data on sample A also reveal small specific heat anomalies at the Ccm21–1q
transition near 540 K and at the 2q–P4bm transition near 582 K, and perhaps just a hint of
the 1q–2q transition near 565 K. We have examined specimens from CNET (Paris) and from
Nanjing; our sample B (figure 2(b)), which was the subject of many earlier studies cited in [69],
has an apparent Curie transition temperature of about 829.5 K, a value of α′ = 0.50±0.05 and a
plateau in specific heat about 10 ± 1 K wide. The data for the incommensurate 1q /2q regimes
are similar to those in figure 2(a). The differences near TC can be related to the disordered
exclusion model in that they change the transition dynamics from first order (nominally pure)
to tricritical (highly Na deficient) and shift the apparent TC. The shift in Curie temperature
is expected to be large (several degrees or more) and quadratic in vacancy concentration, but
we have an insufficient number of samples for which Na vacancy concentrations have been
determined to check the latter prediction.
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3.2. Disordered exclusion model

The specific heat data C(T ) shown in figure 2(c) display a peak broadened by 1 K, which is
approximately 0.1% of TC (i.e., about x2 where x is a few per cent Na vacancy concentration).
The peak is also shifted to lower temperatures by about 15 K (i.e., about x% of TC) from that of
samples [61] with the highest TC; however, as TC is approached from below, the data reveal the
t−1/2 divergence expected for a pure material. In this section we would like to compare these
experimental results with the predictions of Harris [27] and of McCoy and Wu [28] for Ising
models with random defects. Their models are qualitatively different: Harris predicts a finite
cusp with a significant shift in TC (about the defect percentage x), rather small broadening (of
order x2), and several non-divergent terms in C(T ). This idea, that the main effect of impurities
is simply to shift the temperature scale (and hence TC) originated from Osawa and Sawada [29].
In contrast, McCoy and Wu predict no cusp (complete rounding), zero shift in TC, but a larger
broadening (of order x). Thus, qualitatively, the data in figure 2(c) agree better with those
of Harris. However, figure 2(a) exhibits data with larger shifts in TC, larger broadening and,
despite the low T divergence of C(T ) as t−1/2, an unpredicted plateau. It remains to be shown
that Harris’s formalism can reproduce the plateau observed in figure 2(a), whereas his leading
term in C(T ) does not—instead predicting a concave but saturated divergence in C(T ) near
TC; that is, dC(T )/dT in Harris’s model is infinite at the renormalized TC(x), whereas in the
data of figure 2(a) it is zero. The probable origin of the plateau in figure 2(a) is the term Harris
neglected, of form

∫
[d2U(T )/dT 2] dT (his equation (3.28b)), where U(T ) is the unperturbed

free energy in the pure material, which will add a non-divergent but significant contribution
to C(T ) between the Curie temperature TC(0) in the vacancy-free material and the lowered
Curie temperature TC(x) in the samples with vacancies. In this respect it is worth pointing
out that Cardy and Jacobsen [30] have considered the critical behaviour of random bond Potts
models which are first order or tricritical, rather than the second-order transitions considered
by Harris; in such cases, as in Ba2NaNb5O15, there may be large latent heat contributions to
C(T ) near TC(0). In addition, Chen et al [31] have shown that similar models can give a
broadened or even double-peaked specific heat C(T ); the broadening of C(T ) near TC in the
present work resembles that predicted by Chen et al and is not explicitly predicted by Harris.

Harris [27] predicts in a weakly disordered ‘exclusion model’ (one lattice site having
significant vacancy concentration x) in simplified notation

�C(T ) ∼= �C0(T )/[1 + bx2�C0(T )], (7a)

where �C0(T ) is the intrinsic specific heat of the vacancy-free crystal with the non-divergent
background subtracted off:

C0(T ) = d + f T + gt−α′ = d + f T + �C0(T ), (7b)

with �C0(T ) diverging as reduced temperature t−α′
. The model predicts a downward shift

in transition temperature with increasing disorder and a truncation in the otherwise diverging
specific heat cusp. Hence the experimental C(T ) will look intrinsic (and give an uncorrected
α′ = 0.50) far below TC, where the order parameter contribution to the specific heat is only
slightly above the linear baseline due to phonons; but nearer TC, the (normalized) value of C(T)

will be saturated. However, equation (7a) does not yield a flat plateau, in contradiction to the
data; rather, the first derivative of �C(T ) diverges, so saturation is achieved as a finite cusp, not
a flat plateau. It is of course possible that the plateau in figure 2(a) arises from inhomogeneous
broadening of the specific heat due to regions in the sample that have different Na vacancy
concentrations; we think this is unlikely because at TC the Na mobility is sufficiently large to
ensure a homogeneous equilibrium distribution.
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In general the Harris criterion states that pure critical effects are unstable against weak
disorder if α > 0, as is the case here; this makes it reasonable to apply his model to
ferroelectrics. A second formal relationship from Harris offers a plausible and qualitative
check on the use of his equation (7) above; he predicts that a 1% vacancy ratio x will give a
shift in TC downward of about 10 K in the present case (1.3% of TC):

[dTC/dx]/TC = −1.3. (8)

Our experiments give TC about 30 K lower than in samples thought to be of lowest Na vacancy
concentration [43]. Since the vacancy concentrations in these materials are usually [41] of
order 1%–5%, this is in general agreement with the model; i.e., it is of the expected sign and
order of magnitude. However, a simple mean field model (which gives −1.0 in equation (8))
is equally applicable.

In concluding this section we note for readers that Harris’s model is very appropriate for
magnets and is what currently is referred to as a random bond model; for ferroelectrics, random
fields are usually as important as random bonds [70–72], and successful models of relaxors
usually require both.

3.3. The 1q–2q transition and wall roughening model

The transition within the incommensurate (IC) phase from 543 to 582 K occurs near 565 K
and is from a long-range low temperature orthorhombic structure with modulation along one
axis only (1q) to a higher temperature two-dimensional (2q) tweed-like modulation [59–62].
Although this upper IC phase is 2q modulation, the modulation in the second direction has
only short-range ordering and is therefore not tetragonal. We describe it as a wall roughening
of the orthorhombic 1q structure of the lower phase, on the basis of the TEM studies of Pan and
Feng and collaborators [61, 62] which showed directly the onset of wall roughening of the 1q
antiphase boundaries (APBs). The wall roughening is accompanied by a diffusion process that
experimentally peaks [52] at 0.85 cm2 s−1 in accord with theoretical estimates that it exceeds
that due to thermal diffusion of entropy fluctuations [53]. Kiat et al [73] give the dependences on
T of the incommensurate satellite peaks; the full width at half-maximum increases from 0.07◦
of arc (1.4 mrad) to 0.17◦ of arc (3.0 mrad) as the 1q–2q transition is transited. See also [74–76]
for further updates on the low temperature structures and in particular the probable unit cell
doubling along the b-axis; reference [76], in particular, also shows that ferroelectricity and
incommensurability in this material experimentally do not interact, as argued in a theoretical
way in section 1 above and by Levanyuk [64].

A detailed discussion of the strain terms at the 1q–2q transition is given by Toledano and
Toledano [39], who point out that the effective point group in the 2q IC phase is that of the
higher C4v phase, whereas that of the 1q IC phase is that of the lower orthorhombic phase,
and that the 1q phase has a spontaneous strain (exx –eyy) purely due to the fact that the order
parameter is four dimensional. The number of non-zero tensor components is consequently
higher in this phase.

4. Conclusions and comparisons with other critical exponents in ferrodistortive
materials

In summary, we determine the critical exponent α′ for the ferroelectric transition in barium
sodium niobate and show that it is, within a small experimental uncertainty, 1/2, in
agreement with mean field tricritical theory (and in violation of Stanley’s derivation which
predicts α′ = 0); we show that the divergence in specific heat near the Curie temperature
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agrees quantitatively with Harris’s disordered exclusion theory, presumably due to the
known Na vacancy concentration; we measure specific heat and dielectric anomalies at two
incommensurate transitions; and we obtain an upper limit of entropy change at the 1q–2q
transition of about 0.1 J K−1 mol−1 within the IC phase, in agreement with unpublished
estimates based upon the wall roughening theory of Rice et al [63]. We also determine
accurate values of the susceptibility and order parameter exponents γ , γ ′ and β. All values
imply mean field tricritical behaviour [81].

We note in passing that the index of refraction data in disordered ferroelectrics such as
lead magnesium niobate (PMN) or strontium barium niobate (SBN) exhibit a flat plateau n(T )

within ±5 K of TC that has never been explained. The shape of n(T ) is very similar [77] to that
for C(T ) in the present work. This suggests that the same kind of model might be applied. This
might resolve some of the disagreements in that material, where some authors [24] infer mean
field dynamics, and others [4] find non-mean field RFID (random field [3D] Ising dynamics)
behaviour. Note that the values of γ ′ = 1.85 and β = 0.14 ± 0.03 given [4] by Kleeman et al
for SBN require a rather implausible (and as yet unmeasured) value of δ = 14 to satisfy the
Widom relationship (equation (1)) as an equality and require α′ � 0 to satisfy the Griffiths
equation (equation (2)) as an equality; although the standard [2D] Ising model predicts δ = 15,
the work of Kleeman et al assumes [3D] Ising dynamics, not [2D], and the usual [3D] Ising
model has δ = 5 (as at a mean field tricritical point). As Perez-Mato’s group has pointed
out [78–80], apparent non-mean field critical exponents β can arise from some order–disorder
character in nominally displacive transitions, which could be misinterpreted as true ‘critical’
exponents due to critical fluctuations [82].

As an example of recently published work which does not explicitly consider
thermodynamics requirements, Dec et al [83] have given the values β = 1.2 (regarded as
‘suspicious’ by those authors), γ = 2.01±0.04 and δ = 2.6±0.1 for SrTiO18

3 . Partly because
they are from the quantum critical regime, in which γ changes from 1.0 to 2.0, these values
fail to satisfy the Griffiths and Rushbrooke relationships as equalities for any positive value
of α, and would require from equation (5a) (scaling theory) a negative value of both α′ and
α (equation (5b)). In fact, as shown by Schneider et al [84], the values of α′, δ and γ in the
quantum critical regime for three dimensions are α′ = −3 for three dimensions (and −2 for
two dimensions); δ = 3; and γ = 2. Note that α′ < 0.

The results [83] of Dec and Kleeman for SrTiO18
3 [85] therefore give from equation (3)

α′ = 2 − (δ + 1)β = (2 − 3.6 ± 0.2)(1.2 ± 0.1) = −2.3 ± 0.6 (9)

in relatively good agreement with the −3 predicted by Schneider et al. This agreement, not
previously pointed out, adds support to the quantum critical conclusions of [83] and helps
justify their unusual value of β.

The classical derivation of the Rushbrooke inequality assumes positive specific heat CP

at constant polarization P; hence the thermodynamic identity [1]

χ(T )[CE (T ) − CP (T )] = T [(∂ P/∂T )E ]2 (10)

implies (adding CP (T ) to each side)

CEχ(T ) � T [(∂ P/∂T )E ]2. (11)

Taking logarithms of both sides, with P = P(0)[(TC − T )/TC]β , and log(∂ P/∂T ) varying as
β − 1, yields the Rushbrooke inequality equation (2):

− α′ − γ ′ � 2(β − 1). (12)

However this derivation assumes in equation (9) that the electric isothermal susceptibility
χ(T ) = −(∂2G/∂2 E)T , where G is the Gibbs free energy, and that CE = T [(∂S/∂T )E ],
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which may not be true exactly at T = 0, where S is a constant and its temperature derivatives
CE and CP , according to the third law of thermodynamics, are zero. Hence in applying
equations (9) and (10) one must be careful to avoid dividing zero by zero.

Although Dec himself expressed scepticism about his value of β = 1.2 [83] and suggested
that β should be <1.0 (otherwise the order parameter versus T is concave at TC; moreover,
β = 0.65 for all known soluble models), setting it less than unity would make their values of
δ = 2.6 and γ = 2.0 fail the Widom equation (equation (1)), which is satisfied as an equality
for their values, including β = 1.2. Thus, the values of Dec and Kleeman for SrTiO18

3 satisfy
both the Rushbrooke and Widom relationships, when quantum criticality is included [84].

For completeness, however, we suggest a third possibility for the data on SBN:Ce: in
the defect theory of Levanyuk and Sigov, the electric susceptibility near a ferroelectric phase
transition diverges as Nχ(p)r3

c , where χ(p) is the susceptibility of the pure crystal and varies
as (TC − T )−1; N is the concentration density of defects; and rc (the range over which a
defect induces lattice distortions) varies as (TC − T )−1/2. This implies γeff = 5/2. Hence we
see that values of γ near 2 or even larger could arise from defect models, and not just from
quantum critical fluctuations or a random field Ising model. Figure 5.2 of [96] shows that the
effective exponent γ will vary from 1.0 to 2.5 as the transition temperature is approached and
the system changes from a fluctuation-dominated regime to a defect-dominated regime, so an
average value over a temperature interval near TC of about γ = 1.8–2.0 is quite plausible,
particularly for SBN:Ce [4, 24], which has a high density of Ce dopants as defects. We also
note in this context that defect models predict extremely unusual numerical values for other
‘effective’ exponents near structural phase transitions [86] such as αeff = 2 − 2β = 1.0–1.5
and αeff = 2−ν = 1.5 (ν is the exponent describing the correlation function and ν = ν ′ = 1/2
in the mean field) and the exponent describing ultrasonic attenuation divergenceη = 5ν = 2.5.
Such values have been reported experimentally but generally misinterpreted for KMnF3 [87],
CsH2PO4 [88] and BaMnF4 [89, 90], and a defect explanation of their occurrence (e.g.,
α′

eff = 1.1 in BaMnF4) given by one of us [91, 92]. Note that the defects responsible for
values of α′ = 1.1 can be domain walls, so multidomain BaMnF4 satisfies [19] intrinsic mean
field theory with α = 0.54±0.05 above TC (where the domain walls vanish) but a defect model
with α′

eff = 1.1 ± 0.1 below TC. SrTiO3 with some O18 percentage behaves like a mass defect
system, and thus defect exponents may be involved. We note that even for ordinary O16–SrTiO3,
Hoechli and Bruce have shown [93] that the critical exponent describing the elastic coefficient
and the specific heat near T0 = 105 K (tetragonal–cubic antiferrodistortive) is not intrinsic,
and that its experimental numerical value [94, 95] of 1.5 ± 0.2 satisfies the defect theory
of [96], which predicts exactly 3/2; so extrinsic mechanisms for effective critical exponents
seem established for strontium titanate near its tetragonal–cubic transition at about 105 K.
Unfortunately, this result contradicts the earlier conventional wisdom regarding intrinsic critical
exponents in this perovskite family [97]. Finally, we emphasize that the exponents in the defect
theory need not satisfy the Widom, Griffiths or Rushbrooke relationships, because they are not
valid asymptotically as T → TC.
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